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Effect of wall deformations on a confined fluid
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We investigate the effect of wall deformations on a fluid confined in a slit of deformable walls. Monte Carlo
(MC) simulations show that the fluid undergoes rarefaction or condensation depending on the wall rigidity for
a small wall separation. The slope of the mean squared displacement as a function of MC steps has an algebraic
dependence on the wall rigidity. The simulated density profile is qualitatively accounted for by means of a

mean-field theory.

PACS numbgps): 61.20.Ja

Intriguingly rich phase behaviors of a fluid in confined figurations, specifically, the one where the particles fill posi-
geometrieg1] are challenging in statistical mechanics due totions normally occupied by the wall and the one where they
tremendous density inhomogenity induced by the confiningare well away from the wall. This is inspired by a typical
walls. Extensive laboratory experiments and theoretical studsituation shown in Fig. ). The original wall position is the
ies, using density functional theories and computer simulaehord (=2l) of a circle, shown by the dashed line, and the
tions on model Lennard-JonékJ) systemgwhere the par- deformed wall will take the shape of an are 2s). If d is
ticles interact via a spherically symmetric potential, given bythe distance of the center of the particle from the original
vy(r)=4€[(olr)¥2—(alr)®], € being the depth of the in- wall, | =(a®—d?)*2 Moreover, if the angleg tended bys at
teraction ands being the range over which the potential is the center is smalk=a cos ‘(a/d). Since a particle can pen-
repulsivg confined by idealized hard or sdfte., the wall- etrate the wall, the center can lie within the bounds of
particle intercation having a long repulsive or attractive tail,=|H|/2 and outside, as well. In the former cade |H/2|
respectively walls have yielded useful insight into such sys- —|z|, and the wall deformatio,;, the difference in length
tems[2]. Nevertheless, the walls encountered in reality maybetween the arc and the chord, iss2(l). In the latter case
deviate considerably from these idealized walls. For in-d=|z|—|H/2| and the deformatiod,=27—2(s—I). Let us
stance, the effects of wall roughness have been investigatetssume that the stress generated by the wall to relax the
recently[3]. None of these studies, however, focus on thedeformation would follow Hooke’s law. The energy cost of
effect of the wall(shape, et¢.deformability on the phase this stress would act like an external potential on the con-
behavior of the intervening fluid. There have been recenfined fluid and would be given for a particle at by
experimental studiep4] on a system where a colloidal sus- Vext(Z)ZKﬁf for (H/I2—|z])<3; :K(Sg for (|zZ|—H/2)
pension of micrometer-size polystyrene latex particles hasc 1 Vexd|z|=H/2+3)=0; and Vg (2)=0 otherwise.
been confined in foam films. Such systems can be thought ¢fiere K is the stretching modulus of the wall. The unit of
as prototypes of fluids confined by a pair of deformablejength isc, the temperature scaled accordingkigi/e and,
walls. There are ample examples of such systems, namely, g cordingly,K* =K o2/ e [6]. Typical plots 0fVe,(z) have
fluid confined between two interfaces. The effect of the wallpeen shown in Fig. (b) for both a high and a lok* [7].

deformations could be important in the context of biologicalThe roughness of the wall, resulting from cooperative colli-
systems as well, where the transport of the fluids takes place
through narrow channels of deformable walls. 10

Model !

Here we study a simple model incorporating the effect of | x ;
the wall deformations. Let us consider a system of LJ par- 9 d '
ticles in a slit geometry with walls at= +=H/2, wherez is '
normal to the plane of the walls. The wall is treated as an ,
elastic continuum. A LJ particle, viewed as a sphere of di- !
ametero (=2a), will stretch the wall as it approaches the (@) 0 .
wall within a separation equal to or less than its radius. We 5 6
consider only the normal component of the strain generated
in the wall[5], which reduces it to a simple one-dimensional FIG. 1. (8 Model of the wall deformatiofione symmetric half
problem. The wall-particle interaction in this model is treated; yenotes the original walk the deformed walld the distance of

simply in terms of energy difference between various coNhe center of the particle from the original wall, afdhe angle of
s at the center. The dashed continuationdois to makes more

prominent to the eyegb) Sketches of the external potentigl,(z)
*Permanent address: S. N. Bose National Centre for Basic Schas a function o for wall rigidity modulus,K* =0.01 (solid line)
ences, Block-JD, Sector Ill, Salt Lake, Calcutta 700 091, India. andK* =100 (dashed ling

V..(2)
o
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FIG. 3. (a) MSD in thex-y plane in the pore for the bulk liquid
case withH=3 for K* =0.01 (dashed ling and K* =100 (dotted
line). The solid lines correspond to the analogous quantity obtained
from the bulk simulations with the same temperature but wijth.

(b) Log-log plot of r=5/S, as a function ofK* for two different

p(2)

O_é 4 0 1 2 bulk conditions withH =10 (circles andH=3 (boxes. The solid

z z and the dashed lines show the best fit lines.

FIG. 2. Density profileo(z) as a function of Zsolid curve for
K* =0.01, dotted curve foK* = 1.0, dashed curve fd¢* =10 and
long-and-short dashed curve fd¢*=100) for (a) pyo®=0.4,
kgT/e=2.0 and(b) pgo=0.5, kgT/e=1.25, both withH=10; (c)
and (d) same conditions as fopgo®, kgT/e as in (@) and (b),
respectively, but wittH= 3.

of a pair of fixed rough walls in Ref.3]. This is quite ex-
pected, for in the larg&* regime the wall is less mobile due
to the high energy cost of deformations. We note that the
effective pore widthH ¢, defined by the maxima coordi-
nate up to whictp(z) #0, is different fromH and increases
asK* decreases.

sions by the particles, would be ignored. This roughnes The mean squared d|sp|2aceiném1SD? m_tEe _(X y)zplang
would occur at a length scale of the particle diameter HOW_?)araIIeI o the walls, X [=IN(ZL(=x(0)"+(y;
ever, for a low dens?ty where the mpean particle sep.aratior.Tyi(o)).ZD’ where {; ,y;) are the planar coordinates of the
exce,eds the particle aiameter and at a high temperaturIth particle at a given MC stefix;(0),yi(0)) is the initial
) . . positions, and the angular brackets denote averaging over the
where the chance of particles being stuck at the wall is ... | i tiond as a function of the MC stepM [Fi
smaller, this roughness could be ignored, providedo. Initial configurat L : '~ Step g
3(a)] clearly confirms the liquid behavior within the pdi@.
We show in the same figu%ﬁ obtained by carrying out bulk
simulations[with PBC in all three directions and without
The Monte Carlo(MC) simulations are performed by V,(z)] for the same temperature but at a rescaled density
standard Metropolis algorithm oN=192 LJ particles at a pess=poH/Hess. The matching of the MSD obtained in this
bulk densitypoo and temperaturkgT/ €, Subject toV,(2) way with those for the liquids in the pores clearly indicates
in a parallelepiped geometry having periodic boundary conthat the liquid in the pore behaves as one with a bulk density
ditions (PBO) in the x-y directions with the ratio of the di- equal topes;. Note thatpei1<po if H<Hgs, indicating
mensions_X/Ly=J§/2 and no PBC in the direction. Note rarefaction of the liquid in the pore compared to the bulk
that unlike the earlier workg2,3], the wall has a dynamics situation. Clearly, foH =3, independent of the bulk condi-
due to the impinging particles. The dynamics of the wiml tions, the liquid in the pore exhibits rarefaction for a &
the Monte Carlo sengés implicitly accounted for here, that but undergoes condensation, i.ges>po at a higherK*.
is, the wall(z) configuration has a Boltzmann weight accord- Comparing with the density profiles in Figs(c2 and 2d),
ing to the deformation energy cost given in termd/gf(2); we note that while this change takes place, the density profile
hence, the coupled system of the particles and the boundashows a transition from the broad central peak situation to a
evolve self-consistently to a steady state. The first 10 00@hree-layered structure. The specific heat, defined by
MC steps(each step beintyl attempts to move the particles 1/N{(E—(E))?), as a function ofK* shows a peak aK*
are discarded for reaching the steady state, which is checked0.1, which grows with increasing laterat,f/) dimensions
by monitoring the energ¥ of the system. The next 10000 (N=432), implying the existence of a thermodynamic tran-
steps are performed for calculating different quantities of insition. The largeK* behavior is reminiscent of the well-
terest, which are finally averaged over five independent runknown capillary condensatidr2]. Figure 3b) shows another
We report the results from our simulations for two bulk interesting feature of the system. We plot the ratieS/S,,
parameter$8]: a bulk liquid phase below the critical point whereSis the slope of the MSD as a function of MC steps
poo>=0.5, kgT/e=1.25 and a bulk fluid phase above the for the liquid within the pore an&, that in the bulk condi-
critical point pqo®=0.4, kgT/e=2.0. Figures 23 and 2b)  tion, characterized by kgT/e,po0®). Here r follows a
show the density profilep(z) calculated by binning the  power-law behaviorr =ry+A(K*) ™ ¢ with nonzero inter-
coordinates of the particles, for differekt* with H=10.  ceptry as a function oK*, where the exponent is found
Clearly in this case, irrespective of the bulk conditions, theto depend orH (Table ), in agreement with our observation
density profiles show a very flat structureless peak at then the density profiles.
center. ForH=3, on the other handy(z), shown in Figs. It is interesting to understand the density profile while the
2(c) and Zd), exhibits pronounced peaked structurekds  system undergoes rarefaction fidr=3. Clearly, the loss of
increases, indicating the formation of three layers for bothstructure in the density profile cannot be understood by pack-
the bulk conditions. The structure for lar¢€ can be un- ing considerations. Even thoudt:>H in such cases, the
derstood from simple packing considerations as in the caseéensity profile cannot be explained solely by considering a

Monte Carlo simulations
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TABLE |. « for different cases. 0.2
Bulk condition H=10 H=3
quuld 0.05 0.12 0.15
Fluid 0.07 0.13

pore of larger width either. To illustrate this point, we carry o1
out Monte Carlo simulations by switching off.,(z), but
confining the particles between two hard walls, namely, in an
external potentiaVy8(zx Hg4/2), with Vy=c0. The density

profile, shown in Fig. &), exhibits peaks close to the walls, 0.05

quite unlike what we observe in the lId&* regime. We gain
further insight as follows. Let us consider a higfi, where
the density profile shows a clear peak close to the wall. We

pick up all the particles lying under this peak from different % 25 5
configurations and generate the histograhiz,) of z, z
=(1/N")=/z, where the prime denotes that only the par-
ticles under the peak are being considered. Obviously, for a,
well-defined peak, this histogram will be sharp, as shown infie
Fig. 4(b). On the other hand, the histogram for the same
quantity with the particles havin{g|=H/2 for a low K*
deviates from the sharp feature, as in Fig)4This indicates
that the density profile has a peak here, too, but its positioRygt of energy needed to deform the wall.
fluctuates and gets washed out due to averaging over a large
number of configurations. Since a pair of well-defined walls
tends to build up peaked structures close to the walls for the
conditions we consider heléig. 4(@)], the fluctuations in We demonstrate qualitatively the effect of wall fluctua-
the peak position can be associated with those in the wations on the density profile by means of a simple mean-field
position itself for a lowK*. The wall fluctuations, triggered calculation. We note that the symmetry of the geometry al-
by the impinging particles, dominate this regime due to lowlows one to integrate out thgy dependences and consider a
z dependence along with an inversion symmetry. We map

<p(2)>

FIG. 5. Density profile{p(z)) as a function ofz, obtained by
eraging over 100 realizations of the wall position in our mean-
Id theory. The noise of the data is reduced by averaging over an
ncreasing number of realizations. The dotted line, above, shows the
density profile if the walls are fixed.

Mean-field theory

3.0 the repulsive part of the LJ potential into an effective hard
(@) sphere(EHS) system of diameted [10] and treat the long-
= 2.5 m range attraction part perturbatively. Within the local density
= 20 I functional theory, the free energy will be given [0]
1 o He [ L V4 ! !
-5_2_0 0.0 20 F= fo dzp(2)Inp(z) Zfo dzdZCys(z,2")p(2)p(Z')
z H'/2
1.0 (b) - %Jd dzdZv(z,2")p(2)p(2")
W05 H'/2
= | [\ + J'O Vexd(2)p(2).
0.0 : ‘ :
0.5 1.0 1.5 HereCyg(z,2') is the Percus-Yevick direct correlation func-
z, tion [10] of the EHS and2}(z,z') is the long-range attrac-
0.40 © tive part of the LJ interaction. We taked(/2)=(H/2)+ ¢,
where &, assumed to be a Gaussian random variable with
000 - mean zero and standard deviatidn describes the fluctua-
= tions of the wall position. For a given realization éf we
solve numerically the self-consistency equationdér), ob-
0.00 T tained by the stationarity condition of the free energy:
1.5 1.75 2
Z, d
. L p(z2)= ZG‘XF{f dz'Cns(z,2')p(2")
FIG. 4. For the bulk fluid condition witiH=3: (a) p(z) as a 0
functioq of z for particles conﬁned between a pair of h.ard walls at W
separation o_Heff corresponding td<* =0.01; (b) the histogram, +f dz'v2%z,2')p(2') ~Veu(2) |,
f(zg) of zg with K* =100, and(c) that for K* =0.01. d
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where Z is determined by the normalization condition, predictions including that of the behavior of the M$Big.

namely, 4 dzp(z)=1. If we denote the self-consistent solu- 3(b)], which demonstrates the possibility of performing in-

tion obtained for a given realization gfby p.(z), the aver-
age density profile is given byp(z))=[déP[£]ps(2),
where P[£] is the normalized probability distribution @f.

teresting dynamic light scattering experimefi], can be
verified in model systems reported in Rpf]. The dynami-
cal behavior merits further understanding. We believe that

We show the theoretical density profiles in Fig. 5 for theour model would serve as a guide to a thorough theoretical

bulk fluid phase withH=10, K* =0.01. The dotted line in

understanding of the complicated behaviors exhibited by

the figure shows the density profile that has peaks close tg,ch systems. However, our model would require further im-
the walls if the walls have been fixedp(2)), obtained by  provements to this end: to extend it for the cases of low
averaging over 100 realizations &f shows the washing out temperature and high density, and to include the nonlinear
of the peaks close to the walls in qualitative agreement witheffects for large deformations.
the observations from the simulations, even though the de-
tails of the profile do not agree with the simulated ones. This
could be related to the well-known limitations of the local
density approximation in the context of confined geometry
[11]. The author thanks H. lwen for helpful discussions and
To summarize, our work is a theoretical attempt to shownOSPT for financial support. Shrabani Chakrabarti and
the important effects of the wall deformations on the staticB. V. R. Tata are gratefully acknowledged for critically read-
and dynamic properties of a fluid under confinement. Ouiing the manuscript.
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