
RAPID COMMUNICATIONS

PHYSICAL REVIEW E MAY 2000VOLUME 61, NUMBER 5
Effect of wall deformations on a confined fluid
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~Received 6 May 1999; revised manuscript received 4 February 2000!

We investigate the effect of wall deformations on a fluid confined in a slit of deformable walls. Monte Carlo
~MC! simulations show that the fluid undergoes rarefaction or condensation depending on the wall rigidity for
a small wall separation. The slope of the mean squared displacement as a function of MC steps has an algebraic
dependence on the wall rigidity. The simulated density profile is qualitatively accounted for by means of a
mean-field theory.

PACS number~s!: 61.20.Ja
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Intriguingly rich phase behaviors of a fluid in confine
geometries@1# are challenging in statistical mechanics due
tremendous density inhomogenity induced by the confin
walls. Extensive laboratory experiments and theoretical s
ies, using density functional theories and computer simu
tions on model Lennard-Jones~LJ! systems@where the par-
ticles interact via a spherically symmetric potential, given
vLJ(r )54e@(s/r )122(s/r )6#, e being the depth of the in
teraction ands being the range over which the potential
repulsive# confined by idealized hard or soft@i.e., the wall-
particle intercation having a long repulsive or attractive ta
respectively# walls have yielded useful insight into such sy
tems@2#. Nevertheless, the walls encountered in reality m
deviate considerably from these idealized walls. For
stance, the effects of wall roughness have been investig
recently @3#. None of these studies, however, focus on
effect of the wall ~shape, etc.! deformability on the phase
behavior of the intervening fluid. There have been rec
experimental studies@4# on a system where a colloidal su
pension of micrometer-size polystyrene latex particles
been confined in foam films. Such systems can be though
as prototypes of fluids confined by a pair of deforma
walls. There are ample examples of such systems, name
fluid confined between two interfaces. The effect of the w
deformations could be important in the context of biologic
systems as well, where the transport of the fluids takes p
through narrow channels of deformable walls.

Model

Here we study a simple model incorporating the effect
the wall deformations. Let us consider a system of LJ p
ticles in a slit geometry with walls atz56H/2, wherez is
normal to the plane of the walls. The wall is treated as
elastic continuum. A LJ particle, viewed as a sphere of
ameters (52a), will stretch the wall as it approaches th
wall within a separation equal to or less than its radius.
consider only the normal component of the strain genera
in the wall @5#, which reduces it to a simple one-dimension
problem. The wall-particle interaction in this model is treat
simply in terms of energy difference between various c
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figurations, specifically, the one where the particles fill po
tions normally occupied by the wall and the one where th
are well away from the wall. This is inspired by a typic
situation shown in Fig. 1~a!. The original wall position is the
chord (52l ) of a circle, shown by the dashed line, and t
deformed wall will take the shape of an arc (52s). If d is
the distance of the center of the particle from the origin
wall, l 5(a22d2)1/2. Moreover, if the angle,u tended bys at
the center is small,s5a cos21(a/d). Since a particle can pen
etrate the wall, the center can lie within the bounds
6uHu/2 and outside, as well. In the former cased5uH/2u
2uzu, and the wall deformationd1, the difference in length
between the arc and the chord, is 2(s2 l ). In the latter case
d5uzu2uH/2u and the deformationd252p22(s2 l ). Let us
assume that the stress generated by the wall to relax
deformation would follow Hooke’s law. The energy cost
this stress would act like an external potential on the c
fined fluid and would be given for a particle atz by
Vext(z)5Kd1

2 for (H/22uzu)< 1
2 ; 5Kd2

2 for (uzu2H/2)
, 1

2 ; Vext(uzu5H/21 1
2 )5`; and Vext(z)50 otherwise.

Here K is the stretching modulus of the wall. The unit o
length iss, the temperature scaled according tokBT/e and,
accordingly,K* 5Ks2/e @6#. Typical plots ofVext(z) have
been shown in Fig. 1~b! for both a high and a lowK* @7#.
The roughness of the wall, resulting from cooperative co

ci-

FIG. 1. ~a! Model of the wall deformation@one symmetric half#:
l denotes the original wall,s the deformed wall,d the distance of
the center of the particle from the original wall, andu the angle of
s at the center. The dashed continuation ofd is to makes more
prominent to the eyes.~b! Sketches of the external potentialVext(z)
as a function ofz for wall rigidity modulus,K* 50.01 ~solid line!
andK* 5100 ~dashed line!.
R4698 ©2000 The American Physical Society
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sions by the particles, would be ignored. This roughn
would occur at a length scale of the particle diameter. Ho
ever, for a low density, where the mean particle separa
exceeds the particle diameter and at a high tempera
where the chance of particles being stuck at the wal
smaller, this roughness could be ignored, providedH.s.

Monte Carlo simulations

The Monte Carlo~MC! simulations are performed b
standard Metropolis algorithm onN5192 LJ particles at a
bulk densityr0s3 and temperaturekBT/e, subject toVext(z)
in a parallelepiped geometry having periodic boundary c
ditions ~PBC! in the x-y directions with the ratio of the di-
mensionsLx /Ly5A3/2 and no PBC in thez direction. Note
that unlike the earlier works@2,3#, the wall has a dynamics
due to the impinging particles. The dynamics of the wall~in
the Monte Carlo sense! is implicitly accounted for here, tha
is, the wall~z! configuration has a Boltzmann weight accor
ing to the deformation energy cost given in terms ofVext(z);
hence, the coupled system of the particles and the boun
evolve self-consistently to a steady state. The first 10
MC steps~each step beingN attempts to move the particles!
are discarded for reaching the steady state, which is che
by monitoring the energyE of the system. The next 10 00
steps are performed for calculating different quantities of
terest, which are finally averaged over five independent ru

We report the results from our simulations for two bu
parameters@8#: a bulk liquid phase below the critical poin
r0s350.5, kBT/e51.25 and a bulk fluid phase above th
critical point r0s350.4, kBT/e52.0. Figures 2~a! and 2~b!
show the density profilesr(z) calculated by binning thez
coordinates of the particles, for differentK* with H510.
Clearly in this case, irrespective of the bulk conditions,
density profiles show a very flat structureless peak at
center. ForH53, on the other hand,r(z), shown in Figs.
2~c! and 2~d!, exhibits pronounced peaked structures asK*
increases, indicating the formation of three layers for b
the bulk conditions. The structure for largeK* can be un-
derstood from simple packing considerations as in the c

FIG. 2. Density profiler(z) as a function of z~solid curve for
K* 50.01, dotted curve forK* 51.0, dashed curve forK* 510 and
long-and-short dashed curve forK* 5100) for ~a! r0s350.4,
kBT/e52.0 and~b! r0s350.5, kBT/e51.25, both withH510; ~c!
and ~d! same conditions as forr0s3, kBT/e as in ~a! and ~b!,
respectively, but withH53.
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of a pair of fixed rough walls in Ref.@3#. This is quite ex-
pected, for in the largeK* regime the wall is less mobile du
to the high energy cost of deformations. We note that
effective pore widthHe f f , defined by the maximalz coordi-
nate up to whichr(z)Þ0, is different fromH and increases
asK* decreases.

The mean squared displacement~MSD! in the (x-y) plane
parallel to the walls, Xuu

2
†51/N^( i@„xi2xi(0)…21„yi

2yi(0)…2#&, where (xi ,yi) are the planar coordinates of th
i th particle at a given MC step,„xi(0),yi(0)… is the initial
positions, and the angular brackets denote averaging ove
initial configurations‡ as a function of the MC steps,M @Fig.
3~a!# clearly confirms the liquid behavior within the pore@9#.
We show in the same figureXuu

2 obtained by carrying out bulk
simulations@with PBC in all three directions and withou
Vext(z)] for the same temperature but at a rescaled den
re f f5r0H/He f f . The matching of the MSD obtained in thi
way with those for the liquids in the pores clearly indicat
that the liquid in the pore behaves as one with a bulk den
equal to re f f . Note thatre f f,r0 if H,He f f , indicating
rarefaction of the liquid in the pore compared to the bu
situation. Clearly, forH53, independent of the bulk condi
tions, the liquid in the pore exhibits rarefaction for a lowK*
but undergoes condensation, i.e.,re f f.r0 at a higherK* .
Comparing with the density profiles in Figs. 2~c! and 2~d!,
we note that while this change takes place, the density pro
shows a transition from the broad central peak situation t
three-layered structure. The specific heat, defined
1/NŠ(E2^E&)2

‹, as a function ofK* shows a peak atK*
50.1, which grows with increasing lateral (x,y) dimensions
(N5432), implying the existence of a thermodynamic tra
sition. The largeK* behavior is reminiscent of the well
known capillary condensation@2#. Figure 3~b! shows another
interesting feature of the system. We plot the ratior 5S/S0,
whereS is the slope of the MSD as a function of MC ste
for the liquid within the pore andS0 that in the bulk condi-
tion, characterized by (kBT/e,r0s3). Here r follows a
power-law behavior:r 5r 01A(K* )2a with nonzero inter-
ceptr 0 as a function ofK* , where the exponent,a is found
to depend onH ~Table I!, in agreement with our observatio
on the density profiles.

It is interesting to understand the density profile while t
system undergoes rarefaction forH53. Clearly, the loss of
structure in the density profile cannot be understood by pa
ing considerations. Even thoughHe f f.H in such cases, the
density profile cannot be explained solely by considerin

FIG. 3. ~a! MSD in thex-y plane in the pore for the bulk liquid
case withH53 for K* 50.01 ~dashed line! and K* 5100 ~dotted
line!. The solid lines correspond to the analogous quantity obtai
from the bulk simulations with the same temperature but withre f f .
~b! Log-log plot of r 5S/S0 as a function ofK* for two different
bulk conditions withH510 ~circles! andH53 ~boxes!. The solid
and the dashed lines show the best fit lines.
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pore of larger width either. To illustrate this point, we car
out Monte Carlo simulations by switching offVext(z), but
confining the particles between two hard walls, namely, in
external potentialV0d(z6He f f/2), with V05`. The density
profile, shown in Fig. 4~a!, exhibits peaks close to the wall
quite unlike what we observe in the lowK* regime. We gain
further insight as follows. Let us consider a highK* , where
the density profile shows a clear peak close to the wall.
pick up all the particles lying under this peak from differe
configurations and generate the histogram,f (z0) of z0

5(1/N8)( i8zi , where the prime denotes that only the pa
ticles under the peak are being considered. Obviously, f
well-defined peak, this histogram will be sharp, as shown
Fig. 4~b!. On the other hand, the histogram for the sa
quantity with the particles havinguzu>H/2 for a low K*
deviates from the sharp feature, as in Fig. 4~c!. This indicates
that the density profile has a peak here, too, but its posi
fluctuates and gets washed out due to averaging over a
number of configurations. Since a pair of well-defined wa
tends to build up peaked structures close to the walls for
conditions we consider here@Fig. 4~a!#, the fluctuations in
the peak position can be associated with those in the
position itself for a lowK* . The wall fluctuations, triggered
by the impinging particles, dominate this regime due to l

TABLE I. a for different cases.

Bulk condition H510 H53

Liquid 0.05 0.12
Fluid 0.07 0.13

FIG. 4. For the bulk fluid condition withH53: ~a! r(z) as a
function of z for particles confined between a pair of hard walls
separation ofHe f f corresponding toK* 50.01; ~b! the histogram,
f (z0) of z0 with K* 5100, and~c! that for K* 50.01.
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cost of energy needed to deform the wall.

Mean-field theory

We demonstrate qualitatively the effect of wall fluctu
tions on the density profile by means of a simple mean-fi
calculation. We note that the symmetry of the geometry
lows one to integrate out thex,y dependences and consider
z dependence along with an inversion symmetry. We m
the repulsive part of the LJ potential into an effective ha
sphere~EHS! system of diameterd @10# and treat the long-
range attraction part perturbatively. Within the local dens
functional theory, the free energy will be given by@10#

F5E
0

H8/2
dzr~z!ln r~z!2

1

2E0

d

dzdz8CHS~z,z8!r~z!r~z8!

2 1
2 E

d

H8/2
dzdz8vLJ

att~z,z8!r~z!r~z8!

1E
0

H8/2
Vext~z!r~z!.

HereCHS(z,z8) is the Percus-Yevick direct correlation func
tion @10# of the EHS andvLJ

att(z,z8) is the long-range attrac
tive part of the LJ interaction. We take (H8/2)5(H/2)1j,
where j, assumed to be a Gaussian random variable w
mean zero and standard deviation1

2 , describes the fluctua
tions of the wall position. For a given realization ofj, we
solve numerically the self-consistency equation forr(z), ob-
tained by the stationarity condition of the free energy:

r~z!5
1

Z
expF E

0

d

dz8CHS~z,z8!r~z8!

1E
d

H8/2
dz8vLJ

att~z,z8!r~z8!2Vext~z!G ,

FIG. 5. Density profile,̂ r(z)& as a function ofz, obtained by
averaging over 100 realizations of the wall position in our me
field theory. The noise of the data is reduced by averaging ove
increasing number of realizations. The dotted line, above, shows
density profile if the walls are fixed.
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where Z is determined by the normalization conditio
namely, 2*dzr(z)51. If we denote the self-consistent sol
tion obtained for a given realization ofj by rj(z), the aver-
age density profile is given bŷr(z)&5*djP@j#rj(z),
whereP@j# is the normalized probability distribution ofj.
We show the theoretical density profiles in Fig. 5 for t
bulk fluid phase withH510, K* 50.01. The dotted line in
the figure shows the density profile that has peaks clos
the walls if the walls have been fixed.^r(z)&, obtained by
averaging over 100 realizations ofj, shows the washing ou
of the peaks close to the walls in qualitative agreement w
the observations from the simulations, even though the
tails of the profile do not agree with the simulated ones. T
could be related to the well-known limitations of the loc
density approximation in the context of confined geome
@11#.

To summarize, our work is a theoretical attempt to sh
the important effects of the wall deformations on the sta
and dynamic properties of a fluid under confinement. O
s,
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predictions including that of the behavior of the MSD@Fig.
3~b!#, which demonstrates the possibility of performing i
teresting dynamic light scattering experiments@12#, can be
verified in model systems reported in Ref.@4#. The dynami-
cal behavior merits further understanding. We believe t
our model would serve as a guide to a thorough theoret
understanding of the complicated behaviors exhibited
such systems. However, our model would require further
provements to this end: to extend it for the cases of l
temperature and high density, and to include the nonlin
effects for large deformations.
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